Ch-01\{ -:Non-Conventional Machining Process :-
Process :-
process is the sequence of independent and linked procedures which at every stage, consume one or more resources (employee, time, energy, machine, money) to convert inputs (data, material, parts etc.) into outputs.
Manufacturing:-

- The precess of converting raw material, component or parts into finished goods that meet a customer's expectations or specifications.
Machining:-
Machining is a term used to describe a variety of. material removal" process in which a 'cutting tool removes: unwanted material from a workpiece to produce" the a desired shape.
Ex:- Turning, Milling, Drilling, shaping, saving etc. Need of Non-Conventional Machining Methods:\rightarrow Economic considerations.
\rightarrow Replacement. of existing manufacturing methods by more efficient and quicker ones.
\rightarrow Achivement of higher accuracies and quality of surface finish:
\rightarrow Adopting of cheaper materials in place of costlier ones.
\rightarrow Developing methods of maching such materials which cannot be easily machined through the conventional methods.

Electro-Chemical Machining Process (ECM):-
\rightarrow The principle is based on Faraday's Laws of Electrolysis.
\rightarrow Workpiece acts as anode while the fools acts as cathode.
\rightarrow The tool and the workpiece are held close to each other $(0.5 \mathrm{~mm})$ \& a mild $D C$ voltage is applied (3 to 30 V).

\rightarrow When an electrolyte is pumped continiously the positively charged ion are attracted towards the tool (cathode), resulting in removal of material from the work piece in the form of sludge.
\rightarrow This sludge is taken away from the gap by the following electrolyte along with it.
\rightarrow The area where the tool and workpiece are closer experience flow of higher current due to low resistance leading to higher and faster metal removal.
\rightarrow This enables the reproduction of the tool shape on the workpiece.
\rightarrow Workpiece is stationary during the process while the tool is fed at a constant speed in a linear direction.
\rightarrow The common electrolytes are sodium Nitrate and Sodium chloride.
\rightarrow Stainless steel, Brass, Copper, Titanium etc. are used as tool materials.
Advantages:-
\rightarrow Intricate and complex shapes can be machined easily.
\rightarrow High metal removal rate.
\rightarrow Insignificant tool wear.
\rightarrow No cutting forces are involved, so work surface is free of stresses.
\rightarrow High surfaces finish of the order of 0.1 to 2.0 microns.
Dis-advantages:-
\rightarrow Non-Conductors of electricity connot be machined. \rightarrow very high power consumption.
\rightarrow Corrosion and rusting of workpiece; machine fol, fixtures.
\rightarrow His initial investment.
\rightarrow Difficulty in designing of fabrications of tools.
\rightarrow Larger floor space B required.
Applications:-
\rightarrow Machining of hand to machine d heat resistant. materials.
\rightarrow Machining of blind holes d pockets.
\rightarrow Machining of complicated profiles such as jet engine blades, turbine blades. wheels.
\rightarrow Drilling small deep holes in nozzles.
\rightarrow Deburring of parts.
Electrical (Discharge Machining Process (EDM) :-
\rightarrow It is also know as spark-over-initiated discharge machining.
\rightarrow Metal removal takes place due to erosion cause by the electric spark.
\rightarrow Workpiece and electrode is separated by a gap, called spark $\operatorname{gap}(0.005 \mathrm{~mm}$ to 0.5 mm$)$.
\rightarrow The workpiece is connected to the positive terminal (anode) and the tool the negative terminal (cathode) of the power source.
\rightarrow This gap is filled by a dielectric which breaks down when a proper voltage is applied between these two.
\rightarrow When a circuit voltage of 50 V to 450 V is applied, electron start flowing from the cathode, due to electrostatic field, and the gap is ionised.
\rightarrow The electric spark so caused directly impinges on the workpiece with considerable force and velocity, resulting in the development of very high temperature $\left(10,000^{\circ} \mathrm{C}\right)$ on the spot.
\rightarrow This forces the metal to melt and a portion of it may be vaporised even.
\rightarrow These vaporised or melted particles of the metal are thrown into the gap by the electrostatic and electromagnetic forces from where they are driven away by the flowing liquid dielectric..
\rightarrow The rate of material removal depends upon the discharge current, duration of pulse and the rate of pulse repetation.
\rightarrow Machining speed B in $\mathrm{cm}^{3} / \mathrm{min}$.
\rightarrow The gap control is through a servo system which may be electrical or hydraulic.

Advantages:-
\rightarrow Enables high accuracy.
\rightarrow Even highly delicate sections and weak materials can be machined.
\rightarrow Irrespective of its hardiness and strength, any material which is electrically conductive can be machined.
\rightarrow Any shape that can be imparted to the tool can be reproduced on the work.
\rightarrow It is a quicker process.
(1)is-advantages :-
\rightarrow Capacity to machine small workpiece only.
\rightarrow Unsuitable for machining non-conductive materials.
\rightarrow Thermal distortion in the workpiece.
\rightarrow Inability to produce sharp corners.
Applications:-
\rightarrow Useful in tool manufacturing.
\rightarrow Re-sharpening of cutting fool and broaches.
\rightarrow Trepanning of hales with straigh and curved axes.
\rightarrow Machining of cavities for dies.

Plasma Are Machining Process (PAM):-
\rightarrow when gases are heated to temperature above $5500^{\circ} \mathrm{C}$, they are partially ionized and exists in the form of mixture of free electrons, positively Charges Tons and neutral atoms, this mixture is farmed as plasma.
\rightarrow The temperature of the central part is betwe en $11000^{\circ} \mathrm{C}$ to $28000^{\circ} \mathrm{C}$.
\rightarrow Plasma -arc torch carries a tungsten electrode.
\rightarrow It is connected to the negative terminal of $O D C$ power supply source and the other terminal (positive) is connected to the nozzle. Electrode

\rightarrow Passage for supply of gas into the chamber is provided in the forch.
\rightarrow To keep the electrode and nozzle water cooled. there is also a provision of water circulation around the torch.
\rightarrow A strong arc is struck between the electrode and the nozzle and the gas forced into the chamber.
\rightarrow As the gas molecules collide with the nigh velocity electrons of the arc the firmer gets ionised and a very large amount of heat energy is evolved.
\rightarrow This high velocity stream of hot onised gas called plasma is directed on the workpiece to melt its material and also blow it achy.

$$
\begin{aligned}
\rightarrow & \mathrm{Al}-\mathrm{N}_{2}, \mathrm{~N}-\mathrm{H}, \mathrm{Ar}-\mathrm{H} \\
& \mathrm{Mg}-\mathrm{N}_{2}, \mathrm{~N}-\mathrm{H}, \mathrm{Ar}-\mathrm{H}
\end{aligned}
$$

stainless steel/other non-Yerrous metals. $\mathrm{N}-\mathrm{H}, \mathrm{Ar}-\mathrm{H}$ carbon and Alloy Steels, Cast iren-N-H. compressed air.

Advantages:-
\rightarrow Faster process.
\rightarrow Excessively high temperature.
\rightarrow Can be used to cut any material.
Dis-advantages:-
\rightarrow High - initial cost of equipment.
\rightarrow Adequate safety precalltion needed for the operators.
\rightarrow Work surface may undergo metallurgical changes. Applications:-
\rightarrow cutting of stainless steel and non-ferrous metals.
\rightarrow Used in shipyards due to the underwater feasibility.
\rightarrow Other industries like nuclear power plants; chemical industries etc.
\rightarrow Turning and milling of hard to machine materials.
Laser Beam Maching Process (LBM):-
\rightarrow LASER stands for -Light Amplification by stimulated Emission of radiation.
\rightarrow The optical energy (light) is thrown by the flash lamp on the laser tube (Ruby rod) which excites the atoms of the inside media, which absorbs the radiation of incoming light energy.

\rightarrow This results in the to and fro travel of light between the two reflecting mirrors, but the partial reflecting mirror doesn't reflect the total light back and a part of it goes out in the form of a coherent stream of monochromatic light.
\rightarrow This highly amplified beam (stream of light) is focused through a lens, which converges it to a chosen point on the workpiece.
\rightarrow This high intensity converged laser beam, when falls on the workpiece, melts the workpiece material, vaporizes it almost instantaneously and penetrates into it.

Advantages:-
\rightarrow Any material can be machined irrespective of its structure and physical and mechanical properties.
\rightarrow Non-existant fool wear.
\rightarrow can be used for joining dis-similar metals as well.
\rightarrow Very small holes can be made with fairly high degree of accuracy.

Dis-advantages:-
\rightarrow High capital investment.
\rightarrow High operating cost.
\rightarrow Highly skilled operator needed.
\rightarrow Lower production rate.
\rightarrow Limited to thin section.
\rightarrow Not effective to machine highly neat conductive and reflective materials.
Applications: -
\rightarrow Drilling 6 mall holes in hard materials like tungsten and ceramics.
\rightarrow Cutting complex profiles on thin and hard materials.
\rightarrow cutting or engraving patterns on thin films.
\rightarrow Trimming of sheet metal \& plastic parts.

Abrasive Jet Machining Process (AJM) :
\rightarrow The process consists of directing a stream of Line abrasive grains, mixed with compresses air or some other gas at high pressure, through a nozzle onto a surface of the workpiece to be machined.
\rightarrow The abrasive particles are contained in a suitad holding device like a hopper, and fed into the mixing chamber.
$\rightarrow A$ regulator is incorporated in the line to control the flow of abrasive particles.

\rightarrow Compressed air or high pressure gas is supplied to the mixing chamber through a pipe line which carries a pressure gauge and a regulator to control the gas flow. and it's pressure.
\rightarrow The miking chamber carrying the abrasive particles is vibrated and the amplitude of these vibrations controls the flow of abrasive particles.
\rightarrow These particles mix in the gas stream, travel further through a hose and finally through the nozzle at a considerable high speed.
\rightarrow This outgoing high speed stream of the mixture of gas and abrasive particles is known as abrasive jet?
\rightarrow The corrier gas used should be non-toxic, easily available, cheap and the one that dries quickly (Air, Nitrogen and CO_{2})
\rightarrow The abrasive commonly used are Aluminium Oxide - Machining, grooving, cutting Silicon Carbide-Faster machining of hard material Sodium Bi-carbonate - For finishing woick Dolomite - Etching, light cleaning Glass beads - Ane deburring \& light. polishing \rightarrow The nozzles used are made of Tungsten carbide on synthetic sapphire.

Advantages:-
\rightarrow machining of intricate cavities and holes
\rightarrow Machining of brittle-materials with thin sections.
\rightarrow Low capital investment.
\rightarrow No dire of contact between fool and workpiece.
\rightarrow Negligible amount of heat generation.
Dis-advantages :-
\rightarrow Not suitable for machining ductile materials.
\rightarrow Slow metal removal rate.
\rightarrow Poor machining accuracy.
\rightarrow Abrasive particles cannot be reused.
\rightarrow clearing. of embeded, abrasive particles required:
Applications:-
\rightarrow Fine drilling and micro welding.
\rightarrow Machining of semiconductors.
\rightarrow Machining of intricate profiles on hard and fragile materials.
\rightarrow Aperture drilling for election ic microscopes.

Electron Beam Machining Process (EBM) :-
$\rightarrow I^{+}$is a process of machining materials with the use of high velocity elections.
\rightarrow The complete set up is enclosed in a vacuum chamber ($10^{-5} \mathrm{~mm}$ of Hg).
\rightarrow Carries a door through which the workpiece is Placed over the table and then closed and sealed.
\rightarrow The electron gin consists of three ports, tungsten filament, the grid cup and anode.
\rightarrow The filament wire is heated to a temperature of about $2500^{\circ} \mathrm{C}$ is the vacuum as a result of which a cloud of electrons is emitted by the filament, which. is directed by the grid cup to travel downwards.
$\rightarrow A \theta$ the electrons are attracted by the and, they - Pass through its aperture in the form of a controlled beam without colliding with it.
$\rightarrow A$ potential difference. of 50 to 150 kW is maintained between the filament and the anode, as such the electrons passing through the anode are accelerated, to achive as high a velocity as around two third of light
\rightarrow This high velocity of electron stream, after leaving. the anode passes through the tungsten diaphragm, and then through the electromagnetic focusing coils.
\rightarrow The stream is quite aligned and the focusing lens manages to focus it precisely onto the desired spot of the workpiece,
\rightarrow The electromagnetic deflector coil then deflects this aligned stream onto the workpiece, through which the path of cut can be controlled.
\rightarrow The high velocity beam of electrons impinges on the workpiece, where its kinetic energy is released and gets converted into heat energy.

\rightarrow This nest meets and vaporises the work material at the spot of beam impingment.
\rightarrow Adequate vacuum is required to be maintained Inside the chamber so that the electrons can travel from cathode to anode without any hindrance.
\rightarrow There is no arc discharge between the electrodes. no loss of heat from cathode and no contamination of cathode.
Advantages :-
\rightarrow Any material con be machined.
\rightarrow Workpiece is not subjected to any physical or metallurgical damage.
\rightarrow Negligible tool wear.
\rightarrow Heat can be concentrated on a particular spot.
\rightarrow An excellent technique for micro-machining.
\rightarrow No contact between work and tool.
Dis -advantages:-
\rightarrow High initial investment.
\rightarrow Highly skilled operator needed.
\rightarrow Not suitable to produce perfectly cylinderical deep holes.
\rightarrow For small and fine cuts only.
\rightarrow Limited workpiece size due to vacuum.
\rightarrow Lower material removal rate.
\rightarrow High power consumption.
$C h-02$
\therefore Automation:-
Introduction:-
\rightarrow It has been and continues to be the tendency of ind ustry to increase productivity, improve quality of the finished products and thus. enhance the production efficiency.
\rightarrow These objectives have led to an ever growing tend ency to transfer more and more human activities into power operated or mechanisms operated activities.
\rightarrow It implies that the tendency has been to use, power for performing more and more of those functions which ore were performed by human beings or replace more and more human operations by power operated operations.
Mechanization:-
Mechanization of a particular process meas that the same evil be carried out on performed with the use of power or energy, such as mechanical, electrical, preumatic, hydraulic, et. instead of. being performed by a human being.

Automation: -
It represents a higher degree of mechanization, through, which most or all of the operations or activity involved in the
manufacturing of a product are performed Through automatic means i.e, without direct participation of a human being, except in some aspects like retooling of machine when There is a change of product, readjustments for corrections etc.

Types of Automation: -
(i) Partial automation:-

It means replacement of human activities or involvement by automatic means only partially
(ii) Full automation:-

In this type of automation the human involvement is totally elimated and the process is entirely carried out and Controlled through automatic means belong along with a proper feedback system.

Levels of Automation:-
According to Amber and Amber's Yard stick for Automation all types of automation are divided into 10 levels, from $A(0)$ to $A(9)$, each representing a different level of human attribute replaced by machine in an ascending order.
$A(0)$ - levels stands for no mechanization ie, no human attribute is replaced by machine, implying that all the activities and operations ane performed by human beings only and This includes only hand took and manually operated machines.
A(1): Indicates a higher lever of automation, ieee the One which the energy of human muscles.
A(2):- Replacement of dexterity (skill in performing tasks, especially with the hands):
A(3):- Diligence (careful and persistent work on effort).

A(4):- Judgement (The ability to make considered decisions from sensible Opinions).

A(5): Evaluation (to form an idea of the amount, number or value of anythings).

A(6):- Learning. (knowledge on skills acquired through experience on study on by being taught).
A (7):- Reasoning (the power of the mind to think, understand and form Judgements logically).
A(8):- Creativeness (relating to on involving the use of imagination on original ideas in order to create something).

A(9):- Dominance C Power and influence over others):

Needs of Automation:-
\rightarrow Where the environment is highly injurious to human beings ie, handling the radioactive substances.
\rightarrow Where economic feasibility permits it.
\rightarrow where the Process is extremely rapid and complex, such that human participation may lead to errors.
\rightarrow Where their adoption will facintate the use of a Larger number of standardized pants and sub-assemblies.
\rightarrow Where their adoption will lead to large scale savings in labor cost, tooling cost, processing cost and other associates cost.
\rightarrow Where their adoption will enable the use of - group technology in parts manufacture.
\rightarrow where their adoption will make the process Control simpler and more effective.
\rightarrow Where Their adoption will enable maximum utilization of machine, advanced production methods and tooling in order to maximize production rate and enhance quality standards of the products.
\rightarrow when they can be easily adopted without any major alteration in the existing process layout.
Advantages:-
\rightarrow Overall production cost is reduced.
\rightarrow Ensured human safety:
\rightarrow Increased Productivity.
\rightarrow Better Working conditions for Workers.
\rightarrow Tidy and safe workspace.
\rightarrow Minimized human fatigue.
\rightarrow After initial setting, there is minimal involvement of the operator in the actual Process.
\rightarrow Les H10or area required.
\rightarrow Minimized inventory requirement.
\rightarrow Improved quality and reliability of the Products.
\rightarrow Components produced are uniform
\rightarrow Minimized maintenance requirements.
\rightarrow overall profits of the manufacturing concerns are increased.

Ch-03\} - Numeric Control:-

Numeric Control:
\rightarrow Control con be defined as the situation of being under the regulation, domination, or command of another.
\rightarrow Numerical control means control by numbers.
\rightarrow These numbers are arranged in the form of blocks or series, which carry specific instruction known. as prepared programme.
\rightarrow The instructions contained in the programme are read and interpreted by the NC system to regulate the different slides of the machine tool, select suitable cutting speeds and feeds and control tool movements, so that the component io is, machined to the required size and shape.
\rightarrow As per Electronics Industries Association (EIA) NC system is "A system in which actions are controlled by the direct insertion of numerical data at some point. The system must automatically interpret at least some portion of this data".
$\rightarrow N C$ system has made it possible to automate these conventional machine tools too, used in small lot production, and thus overcome the difficulty, especially in respect of large set up time.
\rightarrow In a NC system, the operating instruction are in coded form, such as numbers, letters, symbols etc. are stored on punched topes or cards.
\rightarrow The numerical data, containing these instruction, Is arranged on the tape in the form of a series of several blocks; each block containing information needed to machine one portion of the component.
\rightarrow When the machining of one portion of the component is over, the tape moves forcuard, by a distance equal to the next block, so that the next portion of the component is machined.

Numerical Control of Machine Tool:
\rightarrow Tool is any physical item that can be used to achieve a goal, especially if the item is not consumed in the process.
\rightarrow A machine is a fool containing one or more parts that uses energy to perform an intended action.
\rightarrow A machine tool is a machine for shaping or machining metal or other forms of deformation..
\rightarrow All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine
\rightarrow So numerical control of machine. tools is a programmable automation where in the operating functions of the machine tool are controlled by coded numbers and letters.
Manufacturing Through NC:-
\rightarrow The manufacturing through NC starts with Engineering Drawing of the part to be produced.
\rightarrow It is first received by the process planning department of where it is analysed and interpreted in terms of the process of manufacturing and their sequence to be used for producing that part.

The process sheet is used for:
i) Tool designing
ii) Fixture designing
iii) Deciding tool details
iv) Preset tooling
v) Part programming
\rightarrow The part of programming need to be done which involves planning of the machining sequence, relative positions of citing tool and workpiece at each sad step of the operation and necessary instruction for machining.
\rightarrow This programming can be done manually (MPP- the machining instructions are recorded in a special format, called manuscript) and with the use of computer as computer assisted part programming (CPP - the process sheet is handeled by the computer to interpret the contained instructions; prepare necessary commands for machining and prepare the tape for the NC machine fol).
\rightarrow The next step is preparation of the tape, Ion MPP, a punched tape is prepared from the manuscript and for $C P P$, the computer itself. controls and directs a machine to punch the tape according to its instructions.
\rightarrow The actual machining (production) works starts only. after all the above steps are over.
\rightarrow The machine fool is set to the 'start' position, raw material loaded in it and the machine started.
\rightarrow The rest of the entire cycle of production is taken care of by Numerical Control i.e., through the commands and instructions given by the punched tapes.
The NC Machine Tool System: Electrical command Lines

(NC Machine Tool System)

A complete NC machine tool system consists of the following main elements or units:
a) A machine contred unit (MCU)
b) The machine trod
c) The drive units and servo control
d) Feedback devices.
a) Machine Control Unit (MCU):-
\rightarrow The first subunit of MCV is a Tape reader which receives the coded data from the punched tape, reads it and passes on the information to the buffer storage or data buffer via the decoding circuits.
\rightarrow Buffer storage stores the received information, fl it is needed, and transfers it fast to the reacired area, when needed. to ensure that machine toll operates continuously.
\rightarrow This unit is called Data Processing. Unit c(DPU) which passes on the decoded information to the control init. \rightarrow The control unit directs and controls the operations of different drive units of the machine tool through signal output channels which convey the instructions from the control writ to the machine tool.
\rightarrow The control unit also receives the feedback, through feedback drives to make sure that the instructions given by it are properly carried out by the machine tool.
b) The Machine Tool:-
\rightarrow It is the principal manufacturing arm of the NC system.
\rightarrow It receives the raw material and performs different machining operations over it, in accordance with the instructions. conveyed by the MCU, to shape the material into the desired shape and size of finished article.
c) The Drive Units and Servo Control: -
\rightarrow The drive units mainly consists of stepping motors, $D C$. motors or hydraulic motors, gear trains and transducers $e t c$, and ail these. units as a group known as servo controls or Servo mechanism.
\rightarrow The original commands from $M C U$ are received by the servo controls in the form of electrical signals or precisely electrical pulses and converted into controlled mechanical movements of various slides and other parts of the machine fool.
Commonly there are two types of servo control systems.

$$
\begin{aligned}
& \text {)Open-100p systems }
\end{aligned}
$$

ii) Closed-Loop systems
i) Open-Loop Systems: -
\rightarrow It is simpler and cheaper.
\rightarrow In this system there is no provision to ensure that the slides has actually moved through the desired distance only and that it has actually acquired the desired position as a result of this distance.
\rightarrow It involves feeding of tape, interpreting the information by the tape reader, storing the information in the buffer storage, converting the information into electrical signals and sanding the signals into the control unit.

\rightarrow The control unit energizes the servo controls (driving units) by sending command signals to them, resulting in the driving units to perform certain motion to move the slides through a desired distance.
i) Closed - Loop System:-
\rightarrow It carries an additional feature in that a led back system (is a transducer accompanied by a comparator) is incorporated in its electrical circuit.
\rightarrow The command signals are sent to the servo motor by the control unit while the fransdicer feedback the slide displacement corresponding to these command signals.

\rightarrow The comparator compares the actually achieved slide positions with the command signals and the error, if any is fed back to the control unit, via an amplifier.
\rightarrow The control unit sends corrective commands to the servomotor and this cycle continues unless the signal from feedback unit and that from the contical unit both become equal i.e. zero error.
d) Feedback Devices:-

These are the units which convey the actual slide positions to the MOU, so that these can be compared there with the programmed positions and errors (iynyy) noted and corrected.
i) Analog Transducers:-
\rightarrow It is a feedback device which produces a variable electrical voltage.
\rightarrow This voltage varies in proportion to the rotational speed of the input shaft and can be easily measured and converted into linear distances to indicate corresponding positions of machine table.

Ex-Potentiometer
ii) Digital Devices:-
\rightarrow It is normally employed to convert the rotary motion of the machine screws into compatible electrical pulses.
\rightarrow The number of these pulses indicates the linear? distance moved by the table of the machine corresponding to the rotation of the lead screw.

Tool Positioning System:-
a) Absolute System:-

In this system, the positions are indicated from a fixed zero at reference point.

b) Incremental System:-

In this system, the too positions or locations are indicated with reference to a previously known location.

Numerical Control Technology :-
\rightarrow Controlling a machine fool by means of a prepaid program is called Numerical control technology.
\rightarrow Basic components of NC system:-.

1) Program
2) Machine control unit
3) Machine pol or processing equipment.
4) Program:-
\rightarrow It is the detailed step by step commands that directs the action of the machine tool.
\rightarrow The programme are fed to the machine through some types of input medium such as punched tape, magnetic tape, direct entry.
5) Machine Control Unit:-
\rightarrow It consists of the electronic hardware systems that reads and interpretodtes the programme and converts it into mechanical action of the machine fol.
\rightarrow MCU includes :-
i) Tape reader
ii) Data buffer
iii) Signal output channel to the machine fool
iv) Feedback channels from machine pol.
v) Sequence control.
vi) control pannels
i) Tape Reader:-
\rightarrow It is an electro-mechanical device used: to read the instructions punched in the punched tape.
\rightarrow It converts the punched tape instructions into the machine code instructions and stored in data buffer.
i) Data Buffer:-
\rightarrow It is used to store the input instructions in the logical blocks of information.
\rightarrow Each block of information represents one complete step in the sequence of processing elements.
iii) Signal Output Charnels to the Machine Tool:-

They are connected to the servo motors to do the machining process.
i.) Feedback Channels from Machine Tool:-

They send the Feedback from the machine fool about the new, positions of machine fool slides, compare them with original control output signal and correct the positions if necessary.
v) Sequence Control:-

It co-ordinates all activities of the machine control units elements like reading from the tape and sending signal to the machining fools.
vi) Control Pannel:.

It contains dials and switches to rein the machine manually.
3) Machine Tool and Processing Equipment:-

The machine tool performs the useful work, it consists of the work table, slides and spindles with separate individual servo motor and it controls to drive them independently.
\rightarrow The linear movement of the slides and spindles ane specified with respect to the coordinate axis $x, y d z$.
\rightarrow It is capable of performing verity of machining operations like drilling, reaming, tapping.
\rightarrow It has automatic tool changing capacity by using automatic tool changer automatic work positioning.
NC Procedure:-
a) Process planning
b) Part programming
c) Tape preparation
d) Production
a) Process Planning:-
\rightarrow From the drawing of work part, the manufacturing process are determined and a root seat is prepare.
\rightarrow A root seat is a list containing the sequence of operations.
b) Part programming:-
\rightarrow The sequence of machining steps to be performed by numerical control (program instructions are converted into output signals which in turn control machine operations such as spindle speeds, fool selections and fool movement.
c) Tape preparation:-

The punched tape is checked by running it through a computer which plots vertical or various tool movements on backwards.
d) Production:-
finally the production con be started after successful verification and checking of the tape.

Advantages of NC machine:-
\rightarrow Greater accuracy.
\rightarrow Increased productivity.
\rightarrow Improved product quality.
\rightarrow Greater manufacturing flexibility.
\rightarrow Reduced part inventory.
\rightarrow Reduced flores space requirement.
\rightarrow Improved machine utilisation.
CNS: -
\rightarrow In CNC machine in dedicated computer is used to perform the most of basic $N C$ basic functions
\rightarrow ONC machine is a $N C$ machine which uses a dedicated computer as the machine control unit.
\rightarrow The entire programme is entree and stored in - computer memory \qquad
\rightarrow The machining cycle for each component is controlled by the programme, contained in the computer memory:
Components of CNC Machine Tool System:i) \rightarrow Input/output console.

Pi) ${ }^{2}$ micro processor cos based controlled unit.
iii) Memory
iv) feedback unit
v) Machine Tool
vi) Interfaces
i) Input / output console:-
\rightarrow It r_{s} the unit through which part programm is fed to the © CNC machine tool system and required output is taken out.
\rightarrow It is basically consists of monitor e and

ii) Micro Processor :-

The controller takes input from input device to feedback from feedback unit and actuate the drives as well as the machine fool.
iii) Memory :-
\rightarrow It consists of RAM and ROM.
\rightarrow The RAM stores part programme, while Rom stores the programmes for machine control.
iv) Feedback Unit:-

The feedback units takes input from machine tool and transfers it to control unit for necessary correction.
v) Machine Tool:The machine too B operated by control unit.
vi) Interfaces:-

They ane the connections between the different components of the CNC machine tool system. Classifications Based on Type of Feedback system:-

1) Open loop type CNC machine
2) Closed loop type CNC machine
1. open loop type CNC machine:-
\rightarrow It does not have any feedback mechanism.
\rightarrow It only has motion control unit but don't have. any provision for feedback, which is needed to be compared with input for better control d correction of drive system.

2. Closed loop type CNC machine: -
\rightarrow It has a feedback mechanism.
\rightarrow It has the motion control with a provision of feedback, which can be used for accurately controlling the drive system by comparing it with the input information until the required or desired position, is achieved.

Advantages of CNC machine:-
\rightarrow Each of programme input.
\rightarrow Multiple programme stor aye.
\rightarrow online part programining of editing,
\rightarrow Use of advanced interpolation.
\rightarrow Automatic tool condensation.
Limitations:-
\rightarrow Higher investment cost.
\rightarrow Higher maintenance cost.
\rightarrow Required specialized operator.

Motion Control System (Positioning Control system) \therefore
\rightarrow It means a system of movement through which there will be a relative motion between the fol and the workpiece to enable proper positioning of the tool and machining of workpiece.
\rightarrow In all positioning control systems, a sensor is employed To record the slide positions and feedback this information to the control unit, which compares it with the input data and rectifies the errors, if any.
a) Point to point system
b) Straight Line or straight cut system
c) Contouring or Continious path system
a) Point to point system :-
\rightarrow It is commonly used in operations like drilling, boring, tapping, reaming etc.
\rightarrow Where the primary requirement is of accurately locating the tool or the workpiece at some specified location to perform the desired operation.

\rightarrow This involves positioning of tool or workpiece from one coordinate location to another.
\rightarrow The movement from one location to another is very fast and no control is required over this relative motion between the fool and workpiece because no cutting takes place between the two locations.
b) Straight line or Straight Cut System: -
\rightarrow In this system the cutting tool can move along straight lines only which is parallel to principal. axes of motion i.e., $x-, y-\& z$-axis.

\rightarrow This helps the NC machine tool capable of performing milling operations like groove cutting, slot cutting, milling rectangular shapes.
c) Contouring or Continuous Path System: -
\rightarrow It implies controlled and coordinated simultaneous movements of different slides of the machine fol to enable pre-determined relative motions of the tool and workpiece during the entire machining operation.

\rightarrow The motion of fool and workpiece ane controlled along many axes simultaneously in this system and this result in machining : of different types of curved surfaces and particles, contours and combinations of straight and curved profiles.
NC Part Programming:-
\rightarrow A part program is a list of coded instructions which describes how the designed component or part will be manufactured.
\rightarrow These coded instructions ane called data-a series of letters and numbers.
\rightarrow The part program includes all the geometrical and technological data to perform the required machine functions and movements to manufacture the part.
\rightarrow The part program can be further broken down in to separate lines of data, each line describing a particular e set of machining operations. These lines, which run in sequence are called blocks.
\rightarrow A block of data contains words, sometimes called coded. Each word refers to a specific cutting/movement command. or machine function.
\rightarrow The programming language recognized by the $O N C$, the machins controller, is an I.S.O. code, which includes the G and m code groups.
\rightarrow Each program word is composed from a letter, called the address, along with a number.

Block Example - N080 G01 Z0.5 F40.

Word Example - GO1

Address Example - G
Types of NC Codes:-
\rightarrow The term "Preparatory", in NC means that it "prepares" the control system to be ready for implementing the information that follows in the next block of instructions.
\rightarrow A preparatory function is designated in a program by the word adress ' G ' followed by two digits.

Miscellaneous codes:-
\rightarrow Miscellaneous functions use the adress letter M followed by two digits.
\rightarrow They perform a group of instructions such as coolant on/off, spindle on /of, fool change, program stop, or program end.
\rightarrow They are often referred as machine functions or M- functions.

Important G codes:-

GOO \qquad Rapid Transverse
GOP \qquad - Linear Interpolation

GO \qquad circular Interpolation, CW

GOB \qquad circular Interpolation, coW

G17 \qquad
G18 \qquad $x y$ plane

G19 \qquad $x z$ plane
G.20/G70 \qquad Inch Units

G21/G7I \qquad Metric Units

GMO \qquad Cutter compensation cancel

GUI \qquad cutter compensation Left
$G 42$ \qquad Cutter compensation Right
Tool length compensation (plus)
GU \qquad
G44 \qquad
G49. \qquad
G80 \qquad
G81 \qquad
G82 \qquad
G83
ago
Tool length compensation (minus)
Tool length compensation cancel cancel canned cycles
Drilling cycle
Counter boring cycle
Deep hole drilling cycle
Absolute positioning.
incremental positioning

Important. M codes :-
MOO \qquad Program stop
MOI \qquad
MOL \qquad program end
MOS \qquad spindle on clock wise
MOM \qquad
MOS \qquad spindle stop

MO 6 \qquad
mo 8 \qquad coolant on
MO 9 \qquad coolant of?

M 10 \qquad clamps on
MI \qquad Clamps off

MB \qquad program stop, reset to start
Programming Procedure:-
Step 1: Select reference point, program zero:
Step 2: Determine co-ordinates (Absolute or chain dimensions, zero offset)
Step 3: prepare working plan-determine step by step.

- tool motions
- feed rates
- spindle speeds
- tools used
- coolant supply

Step 4: Write program-franslate operating steps into programming language.
Step 5 . key in program
step 6 : Test and edit program.
step 7 : Start alto cycle.
step 8: Archive proved program

Computer Numerical Control (CNC):-
\rightarrow It is a software based system, in which the computer replaces the control unit of the conventional NC.

\rightarrow The main objective is to simplify the handovared logic systems and all their functions for controlling the machine tool and replace it with the softavare programme to the maximum possible extent. \rightarrow The program is entered into the computer through a tape or keyboard and stored in its memory, which can be called whenever a part is to be machined.
\rightarrow It is easy to edit and modify a program if required which results in considerable saving in fine and cost increased reliability.
\rightarrow An added feature in this system is the diagnostic software, which enables easy trouble shooting if the CNC system fails to operate.

Direct Numerical Control (DNC):-
\rightarrow It employees a separately located central oompelter and directly controls several machine tools simultaneously.
\rightarrow The central computer (known as main frame computer) carries a large memory storage facility.

\rightarrow In this the machine programmes of all the machine tools., connected to the central computer are stored in a device like magnetic disk or drum. $\rightarrow A$ single mainframe computer controls a. large number of different machine tools simultaneously, providing necessary programming instructions from its memory storage instantly to each individual machine pol linked to it.
\rightarrow The computer also pertoms the functions of processing and post processing of the part programmes, enabling an easy and quick correction of these programmes.
\rightarrow The initial installation investment is high and the downtime may also cost a let in case of breakdown of central computer.

Adoptive Control (AC):
\rightarrow The AC system automatically determines the process variables, such as cutting speed and feed, during. the process.

\rightarrow So it makes the speed and feed vary automatically according to the need S of actual cutting conditions present while the machining process is in progress. The operational methods of the system are as follows:\rightarrow Measure the output process variables.
\rightarrow Determine the machining constraints or performance level. \rightarrow Decide a proper strategy for improving the performance. level.
\rightarrow Vary the cutting speed and feed under this strategy to improve the process efficiency.

Adoptive contreal with Optimization (ACO) :-
\rightarrow In this system a performance index/merit figure is to be specified, which is indicative of the overall performance of the process.
\rightarrow It is normally determined on the basis of economic factors like highest production rate or lowest machining cost.
$\rightarrow A C$ system tries to optimize the index by varying speeds and feeds diving the process.
Adoptive control with constraints (ACC) :-
\rightarrow In this system, maximum limit for various process constraints i.e. torque, horse power, cutting force etc, ane specified.
\rightarrow when the process is in progress, the $A C C$ system maximizes the cutting parameters, like speeds and feeds, to such an extent that the resalting actual values of constraints (torque, power etc.) remain within their prescribed limits.

Chapter- δ ROBOT TECHNOLOGY:-

Robot:-
\rightarrow The word 'Robot' is derived from a czech word 'Robota' which means a 'slave labourer' on - forced labourer'.
\rightarrow It can be conceived as such an automated machine which can be programmed and carries many humanistic characteristics in respect of its different movements
\rightarrow Once programmed it can repeat the same sequence of motions any number of times.
\rightarrow It can also be programmed to periform a different sequence of motions to suit different types of requirements.
\rightarrow According to RIA (Robotic Industries Association) A robot is a programmable, multifunctional manipulator designed to move material parts, tools or special devices through variable Programmed motion for the performance of a variety of tasks""
Main Components of Robot:-
i) Base: which may be fixed on mobile.
ii) Manipulator Arm :- with a number of degrees of freedom of movement.
(iii) Gripper on End Effector:-

For holding a piece on a tool, depending upon the application of Root.

(Main opponents of R Coot)
(iv) Drives: known as actuators, which moves the manipulator arm and effector to the required position in space.
(v) Controller: delivers commands to the actuators with the help of hardware and soffeware support.
(vi) Sensors - to act as feedback devices to direct further actions of the manipulator arm and the end effector and to interact the Robot's working environment
Six Basic Motions on Degrees of freedom:-
(i) Vertical Motion:- The entire manipulator arm can be moved up and down vertically either by means of shoulder swivel ie, turning it about a horizontal axis, or by sliding it in a Vertical slide.
(ii) Radial Motion:- in and out movement to the manipulator arm Provided by elbow extension by extending it and drawing back.
(iii) Rotational Motion:- Clock wise on anticlockwise rotation about the vertical axis to the manipulator arm Provided Through arm sweep.
(iv) Ditch Motion: enable up and down movement of the wrist and involves rotational movement as well, known as wrist bend.
(v) Roil Motion:- enable rotation of The wrist, known as wrist swivel.
(vi) Yaw:- also called wrist yaw which facilitates rightward on leftward swiveling movement of the wrist.
J.

(ii) Polar co-ordinate systems:-
\rightarrow gt is also known as spherical coordinate system and the robot with this type of configuration carries two angular (rotary) motions and one radial (linear) motion.
\rightarrow This type of robot carries a rotary base which rotates about a vertical axis providing one angular motion, the second angular motion is provided by the rotation of the arm about an axis that intersects the vertical axis of the base.
\rightarrow The linear motion is provided by the in and out motion of the telescopic arm and work piece on work envelope is hemisphere.

(Polar co-ordinate system)
(iii) Cylindrical coordinate system:-
\rightarrow The robot carries two linear motions and one rotary motion.
\rightarrow The body of the robot is a vertical column which can rotate about a vertical axis to provide the rotary motion.
\rightarrow The arm can slide up and down to provide one linear motion in the vertical direction.
\rightarrow Also it can be slide in and out to provide the second linear motion.
\rightarrow workspace, on work envelope, is cylindrical in shape.

(cylindrical coordinate system)
(iv) Revolute coordinate system:-
\rightarrow gt is also. known as Anthropomorphic Configuration, Articulated configuration on Joint - arm configuration.
\rightarrow The whole arm is mounted on the base which can be rotated about a vertical axis (z-axis) and also can rotate about a horizontal axis provided by the shoulder Joint.
\rightarrow The arm link can also rotate about another horizontal axis provided by the elbow joint which enabler the arm to extend or retract.
\rightarrow The last link of the arm (Wrist) can rotate. about a horizontal axis Provided by the wrist Joint.
\rightarrow workspace or work envelope is quasi- spherical.

Types of Robots:-
(a) General purpose risbots: - are those which carry standard designs and parts and are readily. available.
(b) Special purpose robots: are tailor made to specific job requirements:
Motion system of Robots:-
gt is of following types:-
(a) point to point system.
(b) Continuous path system -

Application of Robots:-
The use of Robot for industrial applications is useful under following condition:-
\rightarrow when the working conditions are dangerous and potentially hazardous to health.
\rightarrow when the work cycles are repetitive in nature.
\rightarrow when it is awkward on humanly difficult to handle a pant on tool eithen due to excessive weight on awkward location on shape.
\rightarrow When the process of manufacturing is of continuous type, such that a large warkifonce is required to work in many shifts, one after other-

Areas of Application:-
Welding:- Mostly spot welding and are welding in automobile industries.

Spray painting:- Robots are used for spray painting of automobile bodies and bodies of home appliances.
machine loading and unloading:- used for loading stock parts and un loading of finished parts on CNC machine tool, Die casting machines, forging presses and hammers, stamping and punch press ste.

Material handling and transfer:- used for shifting an object from one location to the other. Assembly operations:-
screwing of studs and screws in threaded holes, insertion of shafts in holes, screwing and unscrewing of nuts, insertion of electronic components in electronic assemblies, assemblies of Smart electronic motors, plugs, switches et.
Sorting of parts :-
Inspection of finished workpieces on subassemblies especially of electronic components and devices.

Future Applications:-
\rightarrow Medical Science - Surgery, diagnosis.
\rightarrow Nuclear and fossil fuel power plants and reactors.
\rightarrow Mining - Exploration, tunneling, rescue work.
\rightarrow under water Application - Exploration of minerals and oils, salvaging of sunken ships, under water repairing of vehicles.
\rightarrow Army - surveillance, guarding, loading of bombs.
\rightarrow Aerospace researches.
\rightarrow Harvesting and agricultural activities.
\rightarrow Domestic services.
\rightarrow utility services like under water sewer line servicing, delivery services.
\therefore FLEXIBLE MANUFACTURING SYSTEM (FMS):-
In troduction:-
\rightarrow Flexibility can have different inter prestation: bus it general refers to the system's responsiveness. to Changing demand patterns, so that the mix of part styles in the system and the production volume that can be adjusted rapidly to meet changing requirements.
\rightarrow So FMS is the production with machine systems capable of making a ditterent product without retooling on similar changeover.
Need for FMS:-
(i) To Improve operational control Through:-
\rightarrow Reduction in number of unctotronable variables.
\rightarrow Providing tools to recognize and react - quickly to deviations in the manufacturing plan.
\rightarrow Reducing the dependence of human communication.
(ii) To Reduce Direct Labour:-
\rightarrow Removing operators from the machining site by which their responsibility activities can be improved / broadened.
\rightarrow Eliminating dependerice on highly skilled machine operators.
(ii) To improve short Run Responsiveness consisting
\Rightarrow Engineering changes.
\rightarrow Processing Changes.
\rightarrow machining downtime.
\rightarrow letting tool failure.
\rightarrow Late material delivery.
(iv) To Improve long Run Accommodations Though Quicker and Easier Assimilation of :-
\rightarrow changing production volumes.
\rightarrow New production additions and introductions.
\rightarrow Increase machine utilization by :-

- Eliminating machine setup.
- utilizing automated features to replace manual intervention.
providing quick transfer devices to keep machines in cutting cycle
\rightarrow Reduce inventory by:-
- Reducing lot sizes.
- Improving inventory turn over.
- providing The planning tools for IIT (Just In time) manufacturing.

Components of FMS:-
(i) Workstations / processing stations:-

The workstations are typically CNC machine took that perform machining operations on families of parts.

- The various work stations are :-
(i) machining centre:- ane usually CNC machine tools with appropriate automatic tool changing and tool storage features to facilitates quick physical changeover as necessary.
(ii) Load and unload station:- is the physical interface between the FMs and the rest of the factory where now pants enter the system and completely processed parts exit the system.
(iii) Assembly work station:- consists of a number of workstations with industrial robots that sequentially assemble components of the base parts to create the overall assembly.
(iv) Inspection stations'- the parts manufactured are inspected. here for quality purpose.
(v) others:- Sheet metal fabrication which has station fur press working operations, such as punching, shearing, forging stations.
(vi) Supporting: may include inspections stations where CAM, special inspection probes and machine vision may be used, other stations may include part washing stations and temporary storage stations.
(b) Material Handling and Storage Systems:-
\rightarrow The primary material handling system establishes the FMS Layout and is responsible for moving parts between Stations in the system.
\rightarrow The secondary handling system consists of transfer devices, automatic pallet. Changers and other mechanisms to transfer parts from The primary material handling system to the work head of the Processing station on to a supporting station.

4) It is also responsible for the accurate positioning of the part of the workstation, so that the machining process may be performed upon the part in the correct

- Other Purposes include re-orientation of the part if necessary to present the surface that is to be processed and to act as buffer storage as the workstation.
The function of the material handling and storage system in FMS are:-
- Alow random and independent movement of the work parts between stations so as to allow for various routing alteration for the different: parts in the system.
- Enables handling of a variety of works part configurations by meas of pallet fixtures for prismatic parts and industrial robots for rotational parts.
- provides temporary storage.
- provides convenient access for loading and unloading worm parts at load and unload Station.
- Creates compatibility with computer control so that the computer system can direct it to the various workstations load / unload stations and storage areas.
(c) Computer Control System:-
\rightarrow FMS uses a distributed computer system that interfaces with all work stations in the system, as well as with the material handling system and other hardware components.
\rightarrow It consists of a central computer and series of micro-computers that control individual machines in FMS.
\rightarrow The central computer co-ordinates the activities of the components to achieve smooth operational control of the system.
The various functions are :Control of each workstation: often in the form of a CNC control.

Distribution of control instructions: to workstations by means of a central computer to handle the processing occuring at different workstations. Production control: Management of the mix and nate at which various parts are launched into the system is important.
Traffic control:- 50 that parts arrive at right location at the right time and right condition.

Shuttle control:- to ensure the correct delivery of the work part to the Station's worn head.

Workpiece monitoring:- to ensure that we know the location of every element in the System.
Tool Control:- is connected with managing tool location and tool life.

Peformance monitoring and reporting: the computer must collect the data on the Various operations ongoing in the $f M s$ and present performance findings based on this.
Diagnostics:- The computer must be able to diagnose, to a high degree of accuracy? Where a problem may be occurring in the FMS.

The FMS is most suited for the mid variety, mid value production range.

(Flexible Manufacturing system).
\therefore CAD/CAM and CIM:- Ch-ob
CAD:-
\rightarrow The use of a computer to interact with a designer in developing and testing product ideas without actually building prototypes.
\rightarrow The application of digital computers in engineering design and Production
\rightarrow The evolution of a design typically rivolves the creation of geometric model of the Product, which can be manipulated, anally zed and refined.
\rightarrow In CAD, Computer graphics replace the sketches and

- engineering drawing traditionally used to visualize products and communicate design reformation CAD Software:-
\rightarrow It describes the main functions of a CAD program such as drawing, editing, data output, system control, data Storage, management and other special features.
\rightarrow falls in two broad catagories, 2-1 and $3-d$ based on number of dimensions.
$\rightarrow 3 D$ software permits the parts to be viewed with The $3-D$ planes, height, width and derth visible.
\rightarrow such representation approximates the actual shape and appearance of the object to be produced, Therefore they are easier to read end understand

CAD Hard ware :-
$\rightarrow 9+$ describes the physical components of a CAD - So stem such as system unit; memory and hard disk
$\rightarrow 9+$ consists of one on more design workstations, digit computers, plotters and other output devices.
\rightarrow Wound have a communication interface to permit transmission of data to and from other computer system, thus enabling some of the benibts ot
Cos Computer, in tegration.
\rightarrow Input devices are generally used to transfer information from a human or storage medium to computer where " CAD functions" are carried out.
\rightarrow The main hardware components of CAO are System unit, central processing unit, memory monitor? printers and plotters, keyboard, mouse, etc.
Benvettradf GAD:
\rightarrow Reduces conceptional times for new designs.
\rightarrow Products can be created more quickly.
\rightarrow costly mistakes in design and production can be avo dud.
\rightarrow Reduced masobacturing time
\rightarrow Documentation eon he papitinted in various forms for multiple = users.
\rightarrow Ease of documents reproduction and cloning.
\rightarrow visualization of complex tectricar elements.
\Rightarrow The quality of designs.
\rightarrow Clarity of documentation.
\rightarrow Easier to apply new rideas.

- Application of CAD:-
\rightarrow Solid modelling.
\rightarrow Drafting and detailing.
\rightarrow surface modelling.
\rightarrow Assembly.
\Rightarrow-Reverse engineering.
CAM:-
$\rightarrow 91$ zs defined as the use of computer system to plan i manage and control the operations of a manufacturing plant through either direct on indirect computer interface with other pants product resources.
\rightarrow The geometric model developed during - The CAD process. forms the basic of CAM activities.
\rightarrow In case of process planning, features that are Qutized in manubacturing (ie, holes, slots etc.) must be recognized to enable efficient planning st of manufacturing
\rightarrow NC programmes, along with ordering tools and fixtures. result from proles or planning.
\rightarrow Once l: parts are produced, CAD Software can the
used. stor inspector theme a
\rightarrow After passing, inspection, CAM Software can he utilized to instruct to robot systems to assemble the parts to produce the finial product
Benefits of (AMI:-
\rightarrow In large scale production, the results are consistent.
\rightarrow Enables very high accuracy Levels in large scale Production.
\rightarrow usually speeds up production of low volume products
\rightarrow can maximize utilisation of a bul range. of production equipment, including nigh. speed, 5 -an's multi- function and Honing machines, EDM, (MM et t
\rightarrow Can aid in Creating verifying and optimizing
programmes for option um as aching productivity as well as automate the Creation of shop documentation:
\rightarrow Advanced CAM systems with PLM (Product Lifecycle management) integration can provide manufacturing planning and production personnel with data and process management to ensure use of correct data and standard resources.

Application of C.AM:-
\rightarrow Plotter/ cutter
\rightarrow Turning.
\rightarrow Laser cutting
$\rightarrow 3-D$ printing
$\rightarrow \quad 3-D$ milling.

- Differien ce Betcucen Go / CAM:-

| CAD | CAM |
| :---: | :---: | :---: |
| \rightarrow SHards | |

\rightarrow stands for computer Aided \rightarrow Stands for Computein Aided \rightarrow Design \rightarrow Help of a computer to design. Some object.
\rightarrow A CAD user will typically be an engineer with training in GAD software.
\rightarrow Enables engineers an of an chitects to design modes of products.
\rightarrow CAD software offers better visualization of the design, improves accuracy and eliminates error during of the manufacturing
\rightarrow Is used to control the machine tools and - related m achinery in the manufacturin process of the products. \rightarrow optimizes production. proven by reducing waste If raw materials an g Manufacturing errors. process.

CIM:-
\rightarrow complete integration of CAD, CAM and FMS.
\rightarrow Are being used for high volume, highly Standardized production Where mass production technology has traditionally been employed.
\rightarrow Represents the union of hardware, satin bare dat abas management and communications to plan and control production activities from planning and design to manufacturing and distribution
Wet Challenges Before the Manufacturing Engineers:-

Manufacturing engineers are required to achieve the following obilictives to be competitive in a global context.
\rightarrow Reduction in Inventory.
\rightarrow Lower the cost of the product.
\rightarrow Reduce Waste.
\rightarrow Improve quality.
\rightarrow Increase fexibility-in manufacturing to achieve immediate and rapid response to.
\rightarrow Product changes:

- Production changes
- Process change
- Equipment change
- Change of personnel.

Challenges before the Manivacurring Engineers)
-i Volution of पIM:-

\rightarrow Computer Integrated Manufacturing (CIM) is * Considered al natural evolution of the technology of CAD / CAM. Which by it sell perevolved-by the integration of $C A D$ and $G A M . \ldots$, , A.
\rightarrow Manufacturing engineers uabiot started using computers for such e task es like inventory control, demand forecasting, p production planning and control eft. Nil technology was adopted in the development of coon dinate measuring machines (CWMs) which automated inspection.
\rightarrow Yet the foll potential of computerization could not be obtained unless all the segments of manufacturing are integrated, permitting the transfer of data across various fonctimal modules.
\rightarrow This realization led to the concept of computer integrated manufacturing.
\rightarrow Thus the implementation of CIM required the development of whole lat of computer technologies related to hardware and Software.
CIM HardWare:-
CIM Hardware comprises the following:
\rightarrow Manufacturing equipment such as CNE machines on. Computerized work centers, robotic work (els, ONC INFMS in systems 1 (works intonating and tool handling w devices, stor rage Devices, sensors, Shop floor datalls Collection devices, inspection? machines its.
\rightarrow computers, controllers LOCAD/CAM system, Wort s station terminals, data entry terminals, bar code reader RFID tags, printers u plotters and other periphery device, mod ems cables, conn coors etc). Its

CIM software:-
CIM software comprises computer programmes to carry out the following functions:

- Management Information system ~ Shop floor Data
- Sales
- Marketing
- Finance
- Database Management
- Modeling and Design
- Analysis
- Simulation
- Communications
- Monitoring.
- Production control
- Manufacturing Area control
- Job Tracking
- Inventory control.
- Nature and Rove of the Elements its CIM system:-

(Elements of GIM System)
Marketing:-
The need for a product is identified by the marketing division. The specifications of the product, The projection of manufacturing qualities and the Strategy for marketing the product are also decided by the marketing department.
Ware Housing:-
mun
Ware housing is the function involving storage and retrieval of raw materials, components, finished grods as well as shipment of items.

Factory automation hard ware:-

- It is enriches the database with equipment and. Process data, resident either $\overrightarrow{i n}^{n}$ the open aton on The equipment to carry out the production process.
Manufacturing Engineering:-
If is the activity of carrying out the
- Production of the Products involving further to 1 enrichment of she database with performance data and information about the production. equipment and process.
\rightarrow Purchase: -
The purchase department, is responsible for
Spacing the purchase, orders, and follow up, ensure quality in the production process of the vendor, receive the , items, arrange pionsty frasinspection. and supply the items to the stores, on arrange Finely delivery depending on the prog action s schedule for eventual supply to manubacture on g assembly.

Finance:
It deals with the resources pertaining to money. planning of in Vestment, working capital, and cash flow control, realization of receipts, accounting and allocation of funds etc.
Information Management: $\frac{1}{2}$
It involves master production scheduling, database management; communication, manufacturing aton systems integration and management information tosystems.
Product Design:-
The design department of the company establishes the initial database for production of a proposed product. In a (IM system this is - accomplished through activities such as geometric modeling and computer aided design while considering the product requirements an of concepts generated by the creativity of the design - Engineer.

Planning:-
The planning department takes The database established by the design department and enriches it with production data and information to produce a plan for the production of the product.

CIM Benefits:-
Observed by IBM:
\rightarrow It helps to manage customer satisfaction by allowing electronic order entry from customers through Baster response to customer enquiries and changes with more accurate sales projections.
\rightarrow More accurate, realistic production scheduling while it requires les expediting, canceling and rescheduling of production.
\rightarrow For business management activities such as managing manufacturing finance and accounting and developing enterprise directives and financia. Plans, CIM offers better prod vet cost tracking, more accuracy in financial projections and improved. Cash bow.
Observed by Allen Bradley, Iogersoll Milling, cone Drive, forest and continental cai:-
\rightarrow 15-30\% reduction in engineering design cost.
\rightarrow 30-60\% reduction in overall lead times.
$\rightarrow 40-70 \%$ gain in overall production.
$\rightarrow 200-500 \%$ gain in quality.
$\rightarrow 30-60 \%$ requction in Working progress.

