

LESSON PLAN OF 3RD SEMESTER CIVIL ENGINEERING(2023-24)

Discipline: CE	Semester: 3rd/3rd	Name of the Teaching Faculty Swastik Pradhan	
Subject: Structural mechanics	No. of Days/per week class allotted: 05	Semester From Date: 01/08/2023 To Date: 30/11/2023 No. of Weeks : 18	
Week	Class Day	Theory Topics	Update/comment
1st	01	Review Of Basic Concepts	
	02	Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram	
	03	Review of CG and MI of different sections	
	04	Simple And Complex Stress, Strain	
	05	Introduction to stresses and strains	
2nd	01	Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability	
	02	Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio,	
	03	Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.	
	04	Application of simple stress and strain in engineering field Behaviour of ductile and brittle materials under direct loads	
	05	Stress Strain curve of a ductile material	
3rd	01	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area	
	02	Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight	
	03	Complex stress and strain introduction	
	04	Principal stresses and strains: Occurrence of normal and tangential stresses,	
	05	Concept of Principal stress and Principal Planes, major and minor principal stresses	
4th	01	Mohr's Circle and its application to solve problems of complex stresses	
	02	Stresses In Beams and Shafts	

Spandhan

		introduction	
	03	Bending stress in beams – Theory of simple bending	
	04	Equation for Flexure– Flexural stress distribution – Curvature of beam	
	05	Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus	
5th	01	Shear stresses in beams	
	02	Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.	
	03	Stresses in shafts due to torsion	
	04	Concept of torsion, basic assumptions of pure torsion,	
	05	torsion of solid and hollow circular sections, polar moment of inertia	
6th	01	Torsional shearing stresses, angle of twist, Torsional rigidity, equation of torsion	
	02	Combined bending and direct stresses:	
	03	Combination of stresses, Combined direct and bending stresses	
	04	Maximum and Minimum stresses in Sections	
	05	Conditions for no tension	
7th	01	Limit of eccentricity, Middle third/fourth rule, Core or Kern for square, rectangular and circular sections	
	02	chimneys, dams and retaining walls	
	03	Columns and Struts introduction	
	04	Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio,	
	05	Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions	
8th	01	Shear Force and Bending Moment introduction	
	02	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL)	
	03	Types of Supports: Simple support, Roller support, Hinged support, Fixed support	
	04	Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction,	
	05	Types of Beams based on support conditions: Calculation of support reactions using equations of static	

		equilibrium	
9 th	01	Shear Force and Bending Moment	
	02	S.F and B.M diagrams for Cantilevers	
	03	Practice problem	
	04	Practice problem	
	05	S.F and B.M diagrams for Simply supported beams	
10th	01	Practice problem	
	02	S.F and B.M diagrams for overhanging beam	
	03	practice problem	
	04	Position of maximum BM, Point of contra flexure	
	05	Relation between intensity of load, S.F and B.M.	
11 th	01	Slope and Deflection	
	02	Shape and nature of elastic curve deflection curve	
	03	Relationship between slope, deflection and curvature	
	04	Importance of slope and deflection	
	05	Slope and deflection of cantilever for point load by Double Integration method	
12 th	01	Slope and deflection of cantilever for udl by Double Integration method	
	02	Slope and deflection of simply supported beam for point load	
	03	Slope and deflection of simply supported beam for udl	
	04	Macaulay method	
	05	Practice problem	
13 th	01	Indeterminate Beams	
	02	Indeterminacy in beams,	
	03	Principle of consistent deformation and compatibility	
	04	Analysis of propped cantilever with SF and BM diagrams	
	05	Analysis of fixed beam with SF and BM diagram	
14 th	01	Analysis of two span continuous beam with SF and BM	
	02	Trusses: Introduction	
	03	Types of trusses	
	04	statically determinate and indeterminate	

		trusses	
	05	Degree of indeterminacy	
15th	01	stable and unstable trusses	
	02	Advantages of trusses.	
	03	Numerical problem solving	
	04	Numerical problem solving	
	05	Previous year questions solving	
16th	01	Numerical problem solving	
	02	Numerical problem solving	
	03	Previous year questions solving	
	04	Previous year questions solving	
	05	Numerical problem solving	
17th	01	Numerical problem solving	
	02	Numerical problem solving	
	03	Previous year questions solving	
	04	Previous year questions solving	
	05	Numerical problem solving	
18th	01	DOUBT CLEARING CLASS	
	02	DOUBT CLEARING CLASS	
	03	DOUBT CLEARING CLASS	
	04	DOUBT CLEARING CLASS	
	05	Numerical problem solving	